Immunotherapy for Acute Lymphoblastic Leukemia: Challenge and Promise


Acute Lymphoblastic Leukemia (ALL) comprises 80% and 20% of pediatric and adult leukemias, respectively. Treatment is successful in 80% children with ALL but the survival of relapsed cases is poor. In adults, the relapse rate is over 50% and the overall survival is 20-40%. Relapse, mainly due to multidrug resistance, is the major concern in acute leukemias. Chemotherapy intensification has largely improved the survival of children with ALL, but despite this modification, most of the relapsed cases will die. In addition, intensive regimes have high toxicity and several side effects and it might not feasible for the adult. Therefore, the development of novel therapeutic approaches is critical. One of these strategies is immunotherapy. In this paper, written in Iran, by reviewing 50 newest references (2005-2017) using Elsevier, OVID and Pubmed databases, different kind of immunotherapeutic approaches for ALL including antibody and cellular based therapies (such as naked antibodies, bi-specific T-cell engaging a tibodies, antibody–drug conjugates, chimeric antigen receptor (CAR)-modified T cells, natural killer and DC-based and radioimmunotherapy) are briefly introduced. The promising trials are highlighted and the Abs based-immunotherapy-related challenges such as monoclonal Abs toxicities, immunogenicity, and the mechanisms of immunotherapy resistance are discussed. Finally, cellular based-immunotherapy-related problems such as cytokine release syndrome and other challenges are reviewed.


Antibodies Monoclonal Costimulatory and Inhibitory T-Cell Receptors Immunophenotyping

Immunotherapy for Acute Lymphoblastic Leukemia: Challenge and Promise


Marjan Abedi

E-mail: [email protected]
Affiliation: Division of Cell, Cellular and Molecular Biology, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran

Zohre Khosravi Dehaghi

Immunotherapy for Acute Lymphoblastic Leukemia: Challenge and Promise


1. Bodet-Milin C, Kraeber-Bodere F, Eugene T, Guerard F, Gaschet J, Bailly C, et al. Radioimmunotherapy for Treatment of Acute Leukemia. Semin Nucl Med. 2016;46(2):135-46. DOI: 10.1053/j.semnuclmed.2015.10.007 PMID: 26897718
2. Hunger SP, Mullighan CG. Acute Lymphoblastic Leukemia in Children. N Engl J Med. 2015;373(16):1541-52. DOI: 10.1056/NEJMra1400972 PMID: 26465987
3. Newman MJ, Benani DJ. A review of blinatumomab, a novel immunotherapy. J Oncol Pharm Pract. 2016;22(4):639-45. DOI: 10.1177/1078155215618770 PMID: 26607163
4. Fan D, Li W, Yang Y, Zhang X, Zhang Q, Yan Y, et al. Redirection of CD4+ and CD8+ T lymphocytes via an anti-CD3 x anti-CD19 bi-specific antibody combined with cytosine arabinoside and the efficient lysis of patient-derived B-ALL cells. J Hematol Oncol. 2015;8:108. DOI: 10.1186/s13045-015-0205-6 PMID: 26444983
5. Rahgozar S, Moafi A, Abedi M, Entezar EGM, Moshtaghian J, Ghaedi K, et al. mRNA expression profile of multidrug-resistant genes in acute lymphoblastic leukemia of children, a prognostic value for ABCA3 and ABCA2. Cancer Biol Ther. 2014;15(1):35-41. DOI: 10.4161/cbt.26603 PMID: 24145140
6. Tasian SK, Gardner RA. CD19-redirected chimeric antigen receptor-modified T cells: a promising immunotherapy for children and adults with B-cell acute lymphoblastic leukemia (ALL). Ther Adv Hematol. 2015;6(5):228-41. DOI: 10.1177/2040620715588916 PMID: 26425336
7. Hoelzer D. Novel antibody-based therapies for acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2011;2011:243-9. DOI: 10.1182/asheducation-2011.1.243 PMID: 22160041
8. Le Jeune C, Thomas X. Antibody-based therapies in B-cell lineage acute lymphoblastic leukaemia. Eur J Haematol. 2015;94(2):99-108.DOI: 10.1111/ejh.12408 PMID: 24981395
9. Hoffman LM, Gore L. Blinatumomab, a Bi-Specific Anti-CD19/CD3 BiTE((R)) Antibody for the Treatment of Acute Lymphoblastic Leukemia: Perspectives and Current Pediatric Applications. Front Oncol. 2014;4:63. DOI: 10.3389/fonc.2014.00063 PMID: 24744989
10. Weber G, Caruana I, Rouce RH, Barrett AJ, Gerdemann U, Leen AM, et al. Generation of tumor antigen-specific T cell lines from pediatric patients with acute lymphoblastic leukemia--implications for immunotherapy. Clin Cancer Res. 2013;19(18):5079-91. DOI: 10.1158/1078-0432.CCR-13-0955 PMID: 23838315
11. Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006;354(17):1813-26. DOI: 10.1056/NEJMra052638 PMID: 16641398
12. Eapen M, Zhang MJ, Devidas M, Raetz E, Barredo JC, Ritchey AK, et al. Outcomes after HLA-matched sibling transplantation or chemotherapy in children with acute lymphoblastic leukemia in a second remission after an isolated central nervous system relapse: a collaborative study of the Children’s Oncology Group and the Center for International Blood and Marrow Transplant Research. Leukemia. 2008;22(2):281-6. DOI: 10.1038/sj.leu.2405037 PMID: 18033318
13. Kennedy-Nasser AA, Bollard CM, Myers GD, Leung KS, Gottschalk S, Zhang Y, et al. Comparable outcome of alternative donor and matched sibling donor hematopoietic stem cell transplant for children with acute lymphoblastic leukemia in first or second remission using alemtuzumab in a myeloablative conditioning regimen. Biol Blood Marrow Transplant. 2008;14(11):1245-52. DOI: 10.1016/j.bbmt.2008.08.010 PMID: 18940679
14. Nahas MR, Avigan D. Challenges in vaccine therapy in hematological malignancies and strategies to overcome them. Expert Opin Biol Ther. 2016;16(9):1093-104. DOI: 10.1080/14712598.2016.1190828 PMID: 27220455
15. Hoelzer D, Gokbuget N. Chemoimmunotherapy in acute lymphoblastic leukemia. Blood Rev. 2012;26(1):25-32. DOI: 10.1016/j.blre.2011.08.001 PMID: 21958552
16. Sullivan-Chang L, O’Donnell RT, Tuscano JM. Targeting CD22 in B-cell malignancies: current status and clinical outlook. BioDrugs. 2013;27(4):293-304. DOI: 10.1007/s40259-013-0016-7 PMID: 23696252
17. Advani AS. New immune strategies for the treatment of acute lymphoblastic leukemia: antibodies and chimeric antigen receptors. Hematology Am Soc Hematol Educ Program. 2013;2013:131-7. DOI: 10.1182/asheducation-2013.1.131 PMID: 24319174
18. Samochatova EV, Maschan AA, Shelikhova LN, Myakova NV, Belogurova MB, Khlebnikova OP, et al. Therapy of advanced-stage mature B-cell lymphoma and leukemia in children and adolescents with rituximab and reduced intensity induction chemotherapy (B-NHL 2004M protocol): the results of a multicenter study. J Pediatr Hematol Oncol. 2014;36(5):395-401. DOI: 10.1097/MPH.0b013e31829d4900 PMID: 23823112
19. Meinhardt A, Burkhardt B, Zimmermann M, Borkhardt A, Kontny U, Klingebiel T, et al. Phase II window study on rituximab in newly diagnosed pediatric mature B-cell non-Hodgkin’s lymphoma and Burkitt leukemia. J Clin Oncol. 2010;28(19):3115-21. DOI: 10.1200/JCO.2009.26.6791 PMID: 20516455
20. Gorin NC, Isnard F, Garderet L, Ikhlef S, Corm S, Quesnel B, et al. Administration of alemtuzumab and G-CSF to adults with relapsed or refractory acute lymphoblastic leukemia: results of a phase II study. Eur J Haematol. 2013;91(4):315-21. DOI: 10.1111/ejh.12154 PMID: 23738686
21. Raetz EA, Cairo MS, Borowitz MJ, Blaney SM, Krailo MD, Leil TA, et al. Chemoimmunotherapy reinduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse: a Children’s Oncology Group Pilot Study. J Clin Oncol. 2008;26(22):3756-62. DOI: 10.1200/JCO.2007.15.3528 PMID: 18669463
22. Maino E, Scattolin AM, Viero P, Sancetta R, Pascarella A, Vespignani M, et al. Modern immunotherapy of adult B-lineage acute lymphoblastic leukemia with monoclonal antibodies and chimeric antigen receptor modified T cells. Mediterr J Hematol Infect Dis. 2015;7(1):e2015001. DOI: 10.4084/MJHID.2015.001 PMID: 25574360
23. Kohnke T, Krupka C, Tischer J, Knosel T, Subklewe M. Increase of PD-L1 expressing B-precursor ALL cells in a patient resistant to the CD19/CD3-bispecific T cell engager antibody blinatumomab. J Hematol Oncol. 2015;8:111. DOI: 10.1186/s13045-015-0213-6 PMID: 26449653
24. Mack M, Riethmuller G, Kufer P. A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc Natl Acad Sci U S A. 1995;92(15):7021-5. PMID: 7624362
25. Batlevi CL, Matsuki E, Brentjens RJ, Younes A. Novel immunotherapies in lymphoid malignancies. Nat Rev Clin Oncol. 2016;13(1):25-40. DOI: 10.1038/nrclinonc.2015.187 PMID: 26525683
26. Ribera JM, Ferrer A, Ribera J, Genesca E. Profile of blinatumomab and its potential in the treatment of relapsed/refractory acute lymphoblastic leukemia. Onco Targets Ther. 2015;8:1567-74. DOI: 10.2147/OTT.S70524 PMID: 26170691
27. Ruella M, Gill S. How to train your T cell: genetically engineered chimeric antigen receptor T cells versus bispecific T-cell engagers to target CD19 in B acute lymphoblastic leukemia. Expert Opin Biol Ther. 2015;15(6):761-6. DOI: 10.1517/14712598.2015.1009888 PMID: 25640460
28. Chevallier P, Bodet-Milin C, Robillard N, Eugene T, Menard A, Le Houerou C, et al. BCR-ABL1 molecular remission after 90Y-epratuzumab tetraxetan radioimmunotherapy in CD22+ Ph+ B-ALL: proof of principle. Eur J Haematol. 2013;91(6):552-6. DOI: 10.1111/ejh.12183 PMID: 23927500
29. Chevallier P, Eugene T, Robillard N, Isnard F, Nicolini F, Escoffre-Barbe M, et al. (90)Y-labelled anti-CD22 epratuzumab tetraxetan in adults with refractory or relapsed CD22-positive B-cell acute lymphoblastic leukaemia: a phase 1 dose-escalation study. Lancet Haematol.2015;2(3):e108-17. DOI: 10.1016/S2352-3026(15)00020-4 PMID: 26687796
30. George B, Kantarjian H, Jabbour E, Jain N. Role of inotuzumab ozogamicin in the treatment of relapsed/refractory acute lymphoblastic leukemia. Immunotherapy. 2016;8(2):135-43. DOI: 10.2217/imt.15.108 PMID: 26780449
31. Reslan L, Dalle S, Dumontet C. Understanding and circumventing resistance to anticancer monoclonal antibodies. MAbs. 2009;1(3):222-9. PMID: 20065642
32. Kantarjian H, Thomas D, Wayne AS, O’Brien S. Monoclonal antibody-based therapies: a new dawn in the treatment of acute lymphoblastic leukemia. J Clin Oncol. 2012;30(31):3876-83. DOI: 10.1200/JCO.2012.41.6768 PMID: 22891271
33. Garber HR, Mirza A, Mittendorf EA, Alatrash G. Adoptive T-cell therapy for Leukemia. Mol Cell Ther. 2014;2:25. DOI: 10.1186/2052-8426-2-25 PMID: 26056592
34. Park JH, Sauter C, Brentjens R. Cellular therapies in acute lymphoblastic leukemia. Hematol Oncol Clin North Am. 2011;25(6):1281-301.DOI: 10.1016/j.hoc.2011.09.015 PMID: 22093587
35. Lorentzen CL, Straten PT. CD19-Chimeric Antigen Receptor T Cells for Treatment of Chronic Lymphocytic Leukaemia and Acute Lymphoblastic Leukaemia. Scand J Immunol. 2015;82(4):307-19. DOI: 10.1111/sji.12331 PMID: 26099639
36. Ramos CA, Savoldo B, Dotti G. CD19-CAR trials. Cancer J. 2014;20(2):112-8. DOI: 10.1097/PPO.0000000000000031 PMID: 24667955
37. Sadelain M, Brentjens R, Riviere I, Park J. CD19 CAR Therapy for Acute Lymphoblastic Leukemia. Am Soc Clin Oncol Educ Book. 2015:e360-3. DOI: 10.14694/EdBook_AM.2015.35.e360 PMID: 25993197
38. Maude SL, Shpall EJ, Grupp SA. Chimeric antigen receptor T-cell therapy for ALL. Hematology Am Soc Hematol Educ Program. 2014;2014(1):559-64. DOI: 10.1182/asheducation-2014.1.559 PMID: 25696911
39. Cho D, Campana D. Expansion and activation of natural killer cells for cancer immunotherapy. Korean J Lab Med. 2009;29(2):89-96. DOI: 10.3343/kjlm.2009.29.2.89 PMID: 19411773
40. Grzywacz B, Miller JS, Verneris MR. Use of natural killer cells as immunotherapy for leukaemia. Best Pract Res Clin Haematol. 2008;21(3):467-83. DOI: 10.1016/j.beha.2008.07.008 PMID: 18790450
41. Rouce RH, Shaim H, Sekine T, Weber G, Ballard B, Ku S, et al. The TGF-beta/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia. Leukemia. 2016;30(4):800-11. DOI: 10.1038/leu.2015.327 PMID: 26621337
42. Imai C, Iwamoto S, Campana D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood. 2005;106(1):376-83. DOI: 10.1182/blood-2004-12-4797 PMID: 15755898
43. Shimasaki N, Fujisaki H, Cho D, Masselli M, Lockey T, Eldridge P, et al. A clinically adaptable method to enhance the cytotoxicity of natural killer cells against B-cell malignancies. Cytotherapy. 2012;14(7):830-40. DOI: 10.3109/14653249.2012.671519 PMID: 22458956
44. Cruz CR, Bollard CM. T-cell and natural killer cell therapies for hematologic malignancies after hematopoietic stem cell transplantation: enhancing the graft-versus-leukemia effect. Haematologica. 2015;100(6):709-19. DOI: 10.3324/haematol.2014.113860 PMID: 26034113
45. Mamonkin M, Rouce RH, Tashiro H, Brenner MK. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood. 2015;126(8):983-92. DOI: 10.1182/blood-2015-02-629527 PMID: 26056165
46. Qin H, Cho M, Haso W, Zhang L, Tasian SK, Oo HZ, et al. Eradication of B-ALL using chimeric antigen receptor-expressing T cells targeting the TSLPR oncoprotein. Blood. 2015;126(5):629-39. DOI: 10.1182/blood-2014-11-612903 PMID: 26041741
47. Annesley CE, Brown P. Novel agents for the treatment of childhood acute leukemia. Ther Adv Hematol. 2015;6(2):61-79. DOI: 10.1177/2040620714565963 PMID: 25830014
48. Pierro J, Hogan LE, Bhatla T, Carroll WL. New targeted therapies for relapsed pediatric acute lymphoblastic leukemia. Expert Rev Anticancer Ther. 2017;17(8):725-36. DOI: 10.1080/14737140.2017.1347507 PMID: 28649891
49. Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, et al. Inotuzumab Ozogamicin versus Standard Therapy for Acute Lymphoblastic Leukemia. N Engl J Med. 2016;375(8):740-53. DOI: 10.1056/NEJMoa1509277 PMID: 27292104

Immunotherapy for Acute Lymphoblastic Leukemia: Challenge and Promise

Citation tools


Abedi M, Khosravi Dehaghi Z. Immunotherapy for Acute Lymphoblastic Leukemia: Challenge and Promise. Focus on Sciences. 2106; 3(4):1-6


Abedi, M., & Khosravi Dehaghi, Z. (2106). Immunotherapy for Acute Lymphoblastic Leukemia: Challenge and Promise. Focus on Sciences, 3(4), 1-6.


Marjan Abedi, and Zohre Khosravi Dehaghi "Immunotherapy for Acute Lymphoblastic Leukemia: Challenge and Promise". Focus on Sciences 3, no. 4 (2106).

Immunotherapy for Acute Lymphoblastic Leukemia: Challenge and Promise

Share this article

To share this article click on each icone.